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Abstract—We investigate the use of reasoning through Group
Relative Policy Optimization (GRPQO) to enhance the visual
question answering task in vision-language models (VLMs).
Our study evaluates five aspects: reasoning-answer alignment,
grounded reasoning with bounding boxes, generalization from
synthetic data, bias mitigation, and prompt-based reasoning
induction. GRPO improves performance and generalization,
particularly for out-of-domain datasets when structured re-
wards are used. However, reasoning alignment remains im-
perfect, and prompt tuning presents challenges. Our results
highlight both the promise and limitations of reinforcement
learning for advancing visual reasoning capabilities in VLMs.

I. INTRODUCTION

In recent years, reinforcement learning has helped large
language models improve their performance on verifiable
tasks, such as generating correct code or solving mathemat-
ical problems [1]]. Recent work shows that Group Relative
Policy Optimization (GRPO), a reinforcement learning
algorithm, can also improve the ability of vision-language
models for vision question answering (VQA) tasks [2]], [3],
[4], [3]. Furthermore, it appears reinforcement learning leads
to a better generalization across VQA benchmarks than
supervised fine-tuning [3].

However, this research is still nascent, and much remains
unexplored. In this project, we aim to leverage GRPO
on visual spatial reasoning tasks, answering the following
research questions:

1) How aligned is the reasoning of a GRPO trained
model to the final answer?
We observed that the reasoning traces generated by
vision-language models often exhibit low alignment
with the final answer, i.e., models may produce de-
tailed justifications that do not actually support the
predicted response [6] [7]. This suggests the mod-
els” reasoning may be post hoc, i.e., crafted for co-
herence rather than reflecting actual decision-making
[8]. Such misalignment challenges the reliability and
interpretability of these systems, especially in settings
where trust and transparency are critical.

2) Does grounding in reasoning improve performance
in VQA tasks?
In supervised fine-tuning, reasoning with grounding
on the given image has been shown to improve the
performance for the visual question answering [9].
Can we leverage bounding boxes to extend this ap-
proach to datasets lacking annotated reasoning chains

and improve generalization?

3) Can models trained with GRPO on synthetic data
generalize to real-world tasks?
GRPO has shown promise in improving out-of-
distribution generalization for vision-language mod-
els [5]. However, can models trained entirely on
synthetic data generalize to real-world datasets? This
question arises from the desire to train on larger
datasets composed solely of synthetic data, which are
often easier to generate at scale.

4) Does GRPO help mitigate dataset bias within the
training distribution?
Biased datasets can lead models to learn spurious
correlations instead of the intended task [[10], resulting
in poor generalization and fairness issues [11], [12].
While prior work has demonstrated the effectiveness
of GRPO-based Reinforcement Learning with Verifi-
able Reward (RLVR) in improving out-of-distribution
generalization [S], less is known about its capacity
to address in-distribution biases. For example, models
may achieve high accuracy by exploiting patterns in
the question text alone, without properly grounding
answers in the visual input. Can GRPO reduce this
reliance on superficial shortcuts and encourage models
to use all available modalities more faithfully during
training?

5) Can prompt engineering alone induce reasoning
behavior?
We also examine whether prompt design alone, with-
out reinforcement learning, can induce reasoning be-
havior. [4] shows that prompts can hinder or promote
reasoning, but it does not attempt to find an optimal
soft-prompt.

Motivation and Real-World Impact

Improving spatial reasoning in vision-language models
(VLMs) is essential for enabling Al systems to interact with
and interpret the physical world more effectively. Tasks such
as robotic manipulation, autonomous driving, and navigation
in dynamic environments require the ability to reason about
visual scenes in response to complex queries. Enhancing
these capabilities can lead to safer and more reliable deploy-
ment of artificial intelligence in real-world, safety-critical
settings.

Moreover, the current state of visual reasoning research



is still in its early stages. While recent work shows that
reinforcement learning methods such as GRPO can lead to
measurable improvements on visual reasoning benchmarks,
the underlying mechanisms remain underexplored. Under-
standing whether and how GRPO fosters generalization,
mitigates bias, or enables emergent abilities like object
detection could provide key insights into training more
capable and robust models.

II. RELATED WORK

GRPO is a reinforcement learning technique introduced
by the Deepseek team in [[L]. It is capable of significantly im-
proving the performance of LLMs for reasoning-demanding
tasks, such as generating correct code or solving mathe-
matical problems. During training, complex behaviors such
as reflection, where the model revisits and reevaluates its
previous steps, and the exploration of alternative approaches
to problem-solving arise spontaneously [1]. Applying this
technique to Vision-Language Models to improve their rea-
soning ability is the natural next step, and several papers
were published while this project was underway.

[2] found similar emergent behaviours when fine-tuning
the vision language model Qwen2-VL-2B through GRPO
training to optimize performance on two tasks in the SAT
dataset: counting objects in an image, and geometrical
reasoning. Additionally, they show GRPO generalizes better
for the out-of-distribution (OOD) dataset, while supervised
fine-tuning achieves a better performance for the in-domain
dataset for certain tasks.

[4] fine-tuned Qwen2-VL-2B and Qwen2-VL-7B models
using GRPO training on the VSI-100k dataset, showing
significant improvements in visual-spatial reasoning, out-
performing GPT-40 and matching LLaVA-NeXT-Video-72B
on VSI-100k dataset. Furthermore, they show GRPO leads
to stronger performance than supervised fine-tuning. They
compare three prompts and find that a simple prompt leads
to the best results.

[3] applies GRPO on VLMs for object detection and finds
similar insights. They also highlight the effect of prompt and
reward engineering.

Building upon these works, we further study the appli-
cation of GRPO on vision language models from various
perspectives, ranging from bounding boxes to soft prompt-
ing, as explained in more detail in the next section.

III. METHOD

A. Does GRPO result in coherent reasoning-answer align-
ment?

During our analysis, we observed that sometimes the
reasoning of the model contradicts its final answer. An
example of the phenomenon is given below:

Question: The motorcycle is ahead of the train. (True or
False?)

Question: What kind of cake has been served?

A. cinnamon
B. red velvet
C. chocolate
D. carrot

The cake [333.94, 140.46, 178.03, 149.82] and icing [338.24, 141.41, 172.79,
61.11] of the cake gives it away for what type of cake it is, and the carrot [369.06,
142.95, 84.71, 32.57) confirms that it is a carrot cake.

D

Figure 1: An example of grounded reasoning with interleaved bounding

boxes (III-B).
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Figure 2: Overview of our method for grounded reasoning (III-B).

Response: <think> The image shows a blue train ...
Given this context, it is reasonable to infer that the mo-
torcycle is behind the train, not in front of it. <\think>
and <answer> True <\answer>

We quantified this with an LLM-as-judge protocol using
the OpenAl model 04-MINI [13]. We provide the original
question, ground-truth answer, generated reasoning chain,
and final answer to 04-MINI, and ask it to assess whether the
reasoning supports the answer or contradicts it. The prompt

used can be found in Appendix

B. Does grounding in reasoning improve performance in
VOQA tasks?

Our goal is to train a model to generate reasoning chains
interleaved with bounding boxes, which we hypothesize will
improve VQA performance. An example of a desired output
is shown in Figure [I]

We achieve this using the GRPO technique for 2 reasons:
(1) GRPO does not require the ground-truth reasoning chains
to train with, (2) GRPO has been proven to generalise better
for the out-of-domain datasets [3]].

As shown in Figure [2] our method consists of 2 stages:

e SFT-warmup: We train the base model, up to 10
epochs, to generate bounding boxes as part of its
reasoning chain.

+ GRPO: starting from the SFT-warmup model, we apply
GRPO using 3 reward functions, as explained below.

REWARD DESIGN During our GRPO training, we apply the
following 3 reward functions:



o Accuracy: Exact match between the predicted and the
true answer.

o Format: The reasoning and the final answer of the
model should be within <think>...<\think> and
<answer> ...<\answer> tags respectively.

e IoU Score: Average intersection over union score of
the generated and ground-truth bounding-boxes.

C. Can models trained with GRPO on synthetic data gen-
eralize to real-world tasks?

The goal of this part is to investigate whether fine-tuning a
VLM on a synthetic dataset can improve its performance on
visual-spatial reasoning tasks. We fine-tune our base model
on a synthetically generated dataset and focus on the task
of deciding if a given sentence about a given image is true.
To this end, we apply two fine-tuning methods: SFT and
GRPO.

The vision modules are kept frozen throughout both
training processes to retain pretrained vision representations.
We evaluate the models on both in-distribution and OOD
data to test if the model is learning in the first part and if it
is generalizing in the second part.

Supplementary studies are made to investigate the poten-
tial gains in performance by adding different modalities to
the input, such as the depth image and the bounding boxes
for the subjects and objects of the images.

D. Does GRPO help mitigate dataset bias?

Our goal is to verify and measure how well GRPO can
reduce the sensitivity of a model trained on a biased dataset.
To this end, we first study if the dataset used contains any
textual bias, or visual bias. We call textual bias any feature
that can help a model, that we call textual bias-only
model, make correct predictions without access to the
image. Similarly, we call visual bias any characteristic of
the dataset from which a visual bias—-only model
can infer the correct label without the question.

The textual bias—-only model receives only the
question as input. It parses the text to identify features,
such as specific keywords, that correlate with a particular
label. For example, if a certain word or phrase is frequently
associated with the label False during training, the model
will learn to predict False whenever that cue is detected at
inference time. This allows the model to exploit spurious
correlations in the data, rather than engaging in multimodal
reasoning. By analyzing the model’s performance, we can
quantify the degree of textual bias present in the training
datasets.

To study bias mitigation at various levels, we artificially
introduce textual bias by undersampling the original training
dataset. This approach allows for a fine-grained analysis of
how a biased dataset affects models trained with SFT versus
GRPO.

Finally, we replicate this study using a smaller model
to examine whether it exhibits greater sensitivity to dataset
bias.

E. Can prompt engineering alone induce reasoning behav-
ior?

We apply soft prompt tuning using the PEFT library [14],
optimizing a small learnable prefix of IV tokens prepended
to the input. The base model weights are frozen, and only
the soft prompts are trained using the Adam optimizer with
a cosine annealing schedule. Training is performed on the
VSR dataset.

We compare two fine-tuning strategies:

1) Answer-only fine-tuning: The model learns to output
only the final answer given an image and a question.

2) Reasoning-chain fine-tuning: The model learns
to output full reasoning traces using <think>
...<\think> and <answer> ...<\answer>
tags. These traces were generated by a GRPO-trained
Qwen model.

IV. EXPERIMENTS & RESULTS

A. Does GRPO result in coherent reasoning-answer align-
ment?

We use Qwen2.5-VL-3B-Instruct model as our
baseline and train the following models, and train them on
the VSR dataset using SFT (Qwen-SFT) and GRPO (Qwen-
GRPO).

We then run the evaluation on the VSR validation set,
computing the accuracy and the reasoning-answer alignment
score using 04-MINI. We present the results in Table [l]

Model Reasoning | Accuracy Alignment
Qwen-Instruct v 70.59% 88.29%
Qwen-SFT X 84.12% -
Qwen-GRPO v 86.47 % 82.86%

Table I: Accuracy and Alignment scores on validation split of VSR.

Based on Table [, we have the following observations:

o Training to reason achieves a higher accuracy of
86.47% over 84.12%.

o GRPO method decreases the reasoning-answer align-
ment score by 6%. We find this result surprising, and
incorporating this as a reward during training is an
interesting future direction.

B. Does grounding in reasoning improve performance in
VOA tasks?
We use Qwen2.5-VL-7B-Instruct model as our
baseline and train the following models:
e Qwen-SFT-1: Base model trained with SFT for 1
epoch
e Qwen-SFT-10: Base model trained with SFT for 10
epochs for fair comparison with Qwen-GRPO



¢ Qwen-GRPO: Qwen-SFT-1 trained with GRPO for
10 epochs

We use A-OKVQA [15] as training data because it
includes interleaved bounding-box reasoning chains required
for the SFT-warmup stageﬂ We, then, use DrivingVQA [9]
as our out-of-domain evaluation dataset, and present the
results in Table [

As shown in Table [l the GRPO method outperforms
the SFT-based models on both datasets. We observe the
following:

o The improvement is especially pronounced for the
OOD dataset, where the F1-score increases from 54.47
to 61.31.

« Incorporating bounding-boxes based reward (IoU) helps
for the OOD dataset.

o The effect of the Format reward is negligible, and we
think it is because during the SFT-warmup stage, the
model already learns to output its response following
the format of <think> and <answer> tags.

Methods Rewards DrivingVQA A-OKVQA
Accuracy Format IoU (out-of-domain) (in-domain)
SFT-1 - - 54.47 88.03
SFT-10 - - - 5191 85.36
GRPO v v X 57.89 88.56
GRPO v X v 61.31 88.3
GRPO v v v 61.31 88.3

Table II: F1 scores of SFT and GRPO-based models for grounded reasoning.

C. Can models trained with GRPO on synthetic data gen-
eralize to real-world tasks?

In this part, we use Rel3D [16] as the synthetic dataset
and SpatialSense [17] as the real-world dataset. Rel3D is a
minimally contrastive dataset, consisting of nearly identical
3D scene pairs that differ only in whether a specific spatial
relation holds, minimizing the presence of bias (Figure [3).

We use Qwen2.5-VL-3B-Instruct model as our
base model and train the following models:

e Qwen-SFT-2: Base model trained with SFT for 2
epochs on Rel3D.

o Qwen-SFT-50: Base model trained with SFT for 50
epochs on Rel3D.

e Qwen-GRPO: Base model trained with GRPO for 2
epochs on Rel3D.

e Qwen-GRPO-AUG: Inspired by [18]], we trained base
model with GRPO for 2 epochs on Rel3D with added
modalities, such as the depth image and bounding
boxes.

o Qwen-SFT-SS:
SpatialSense.
As we can see in Table QWEN-SFT-2 outperforms

QWEN-GRPO on both datasets. Additionally, even with the

Base model trained with SFT on

!For training GRPO, we don’t use the reasoning chains.

added modalities (QWEN-GRPO-AUG) the performance is
still similar to those without the augmentations.

However, the model trained on the SpatialSense dataset
(QWEN-SFT-SS) performs significantly better on Spa-
tialSense and lower on Rel3D. In our hypothesis, this shows
that a synthetically rendered dataset (Rel3D) is significantly
harder for the model to learn from.

Methods Training Data  Augmented Test Data
Rel3D SpatialSense
SFT-2 Rel3D X 53.6% 50.8%
SFT-50 Rel3D X 55.4% 46.8%
GRPO Rel3D X 50.9% 48.2%
GRPO-AUG Rel3D v 48.3% -
SFT-SS SpatialSense X 37.7% 76.5%

Table III: F1 scores of SFT and GRPO-based models trained on Rel3D.
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(a) Rel3D example. (b) SpatialSense example.

Figure 3: Image comparison between the two datasets.

D. Does GRPO help mitigate dataset bias?

For this study, we choose to use the Visual Spatial
Reasoning (VSR) [19]. We identify minor textual bias in
VSR, evidenced by our textual bias-only model
achieving 53.2% accuracy. We can reject the null hypothesis
that the model’s performance is equivalent to random guess-
ing, having a p-value of ~ 8-107%. On the other hand, we
don’t find any visual bias using a small convolutional neural
network nor using a visual transformer of depth 8, 12, and
16.

We choose to focus on textual biases only. To this end, we
increase the dataset’s textual bias via targeted undersampling
(see Appendix [VII-C). Table [TV] shows the Fl-score of the
textual bias-only model on the artificially created
biased training set.

Train Data Textual bias-only model F1-Score
VSR 53.2%
Biased VSR 68.9%
Strongly Biased VSR 100%

Table IV: Textual bias-only model FI-Score for each training set.

Using these biased datasets, we trained Qwen2.5-VL 3B
Instruct using, on one side, supervised fine-tuning (SFT),
and on the other, GRPO. We evaluated the models on the
original balanced validation set. The results obtained with
SFT on the balanced test set are summarized in Table [Vl



Train Data Test F1 Score (%)

Qwen-SFT  Qwen-GRPO

VSR 82.0 84.8
Biased VSR 84.6 82.3
Strongly Biased VSR 79.9 80.7

Table V: Test F1 scores of Qwen variants trained on each dataset.

We first observe that GRPO offers no significant ad-
vantage over SFT in mitigating bias. Furthermore, there is
no notable drop in test Fl-score when comparing models
trained on the original VSR dataset and the Biased VSR
variant. On the Strongly Biased VSR dataset, performance
decreases slightly, but both models still achieve comparable
results. Given the degree of this biasing scenario, we con-
clude that Qwen2.5-VL 3B Instruct is generally robust to
dataset-induced bias. As a further stress test, we trained the
model using SFT on an extremely limited dataset consisting
of only five examples, all labeled False. Surprisingly, this
led to a ~ 5% increase in Fl-score on the test set compared
to the baseline with no SFT.

To investigate whether smaller vision-language models are
more sensitive to bias, we conduct additional experiments
using SmolVLM-2.2B-Instruct. We successfully fine-tune
this model using SFT on both the original VSR dataset and
its strongly biased variant.

When fine-tuned using SFT on the original VSR dataset,
SmolVLM-2.2B-Instruct achieves an Fl-score of 0.677. On
the Strongly Biased variant, the model attains a nearly
identical score of 0.673. These results suggest that even
smaller models exhibit resilience to in-domain dataset bias.

Due to the difficulty in implementing an efficient caching
mechanism compatible with visual GRPO, for SmolVLM,
GRPO training was limited to only half an epoch. As
a result, the GRPO outcomes are not comparable to
those obtained via SFT. Finally, we experimented with an
even smaller model, SmolVLM-500M-Instruct, however, the
model wasn’t able to reason meaningfully.

We thus conclude that it would be difficult to inadvertently
bias the studied vision models. We hypothesize that this
robustness stems from the fact that leveraging new spurious
correlations would require the model to unlearn representa-
tions acquired during its pretraining and instruction tuning
phases.

E. Can prompt engineering alone induce reasoning behav-
ior?

While simple in principle, prompt tuning proved chal-
lenging in practice. Qwen is not officially supported by the
PEFT library, and we found that the learning rate had to be
increased by several orders of magnitude compared to full
fine-tuning.

We first optimized a soft prompt to produce only answers
(without reasoning) on the VSR dataset. With 5 soft prompts
and 4 training epochs, the model failed to follow the required

output format, resulting in an effective accuracy of 0% under
strict formatting evaluation, compared to 84% with full fine-
tuning. If we ignore formatting and evaluate only whether
the model considers True or False correctly, accuracy rises
to 87%, but unlike full SFT, the soft prompt fails to produce
well-structured outputs.

In the second experiment, we trained on reasoning traces
generated by the GRPO-tuned Qwen model. Although train-
ing loss decreased significantly (cross-entropy dropping
from 0.8 to 0.12), we observed no improvement in evaluation
accuracy over the baseline.

Multiple factors could explain this, but based on exten-
sive testing, we suspect that because the GRPO-generated
reasoning traces are not reliably aligned with final answers,
their effectiveness for learning reasoning behavior is limited.

V. CONCLUSION AND LIMITATIONS

We investigated the use of GRPO to improve the
visual question answering through reasoning in vision-
language models across multiple tasks. Our experiments
confirm that GRPO outperforms SFT for grounded reasoning
and improves out-of-distribution generalization, especially
when combined with structured rewards. We also found
that reasoning-answer alignment remains imperfect: GRPO-
trained models display more elaborate chains-of-thought
but lower alignment, suggesting these detailed justifications
reflect pattern-matching rather than true visual reasoning.

However, we also encountered several limitations. Spatial
reasoning turned out to be significantly more challenging for
VLMs on synthetic data, compared to real-world datasets.
This is likely due to the distribution shift between the
synthetic images and the real-world images the VLM was
pre-trained on. Reasoning-answer alignment remained im-
perfect, with many GRPO responses exhibiting plausible
but logically misaligned justifications. Bias mitigation with
GRPO could not be meaningfully evaluated, as the models
did not exhibit measurable bias, highlighting the resilience
of VLMs to spurious correlations during fine-tuning. Finally,
soft prompt tuning on VLMs was difficult to optimize and
produced inferior results.

Future work should explore improved reward design
for alignment and domain-adaptive pretraining to bridge
synthetic-real gaps.
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VII. APPENDIX
A. Additional examples of reasoning-answer alignment

An example from GRPO labeled as “contradiction” by the
judge:

Image: image [4] (not passed to the judge)

Model: GRPO

Question: The laptop is on top of the handbag.

true label: True

Response: <think> The image shows a laptop placed on
a surface, with a red case or pouch behind it. There is no
indication that the laptop is on top of the case. Instead,
the case appears to be underneath the laptop. </think>
<answer> False </answer>

Judgement: Reasoning states the case appears to be un-
derneath the laptop (so the laptop is on top), but the answer
is False.

Judge label: contradiction

Figure 4: Example labeled as “contradiction” by the judge.

An example from GRPO labeled as “missing-detail” by
the judge:

Image: image [3] (not passed to the judge)

Model: GRPO

Question: The dog is beneath the bench.

true label: True

Response: <think> The image shows a black dog lying
on the grass, with its head resting on the green bench.
The dog appears to be chewing on a stick, which is also
on the ground near the bench. Given this information, it
seems likely that the dog is beneath the bench, but the
reasoning never explicitly establishes the dog’s full body
position relative to the bench. </think> <answer> True
</answer>

Judgement: Reasoning describes the dog’s head resting on
the bench but never establishes that the dog is actually
beneath the bench.

Judge label: missing_detail

s prse % £

Figure 5: Example labeled as “missing-detail” by the judge.

An example from GRPO labeled as “irrelevant” by the judge:

Image: image [6] (not passed to the judge)

Model: GRPO

Question: The train is away from the chair.

true label: False

Response: <think> The image shows a view through a
window of a brick wall, which suggests that the train is
stationary or moving very slowly. There is no visible motion
blur or other indicators that the train is moving quickly.
Additionally, the presence of a chair near the window
implies that the train is likely stationary at a station or a
stop. </think> <answer> False </answer>
Judgement: The reasoning discusses the train’s motion and
stationarity but never addresses the spatial distance between
the train and the chair.

Judge label: irrelevant

Figure 6: Example labeled as “irrelevant” by the judge.

Base model example labeled as “other” by the judge, as



it is an example where it’s not actually misaligned but the
model is "uncertain”. Also, the model seem to reason about
the caption and not on the image:

Image: image [7] (not passed to the judge)

Model: Base

Question: The chair is touching the handbag.

true label: False

Response: <think> The image description does not pro-
vide any information about the position of the chair relative
to the handbag. There is no mention of the chair being close
to or touching the handbag. Therefore, we cannot determine
if the statement is true based on the given information.
</think> <answer> False </answer>

Judgement: Reasoning says we cannot determine if the
chair is touching the handbag but the answer asserts it is
false

Judge label: other

Figure 7: Example labeled as “other” by the judge.

B. Additional experiments for reasoning-answer alignment

We report the additional experiments on the test, val-
idation and training set for evaluating reasoning-answer
alignment in Tables [VI] and [VII]

Split | Model Accuracy Alignment
Test Base 72.29% 68.29%
GRPO 83.43% 62.29%
Train Base 70.29% 64.57%
GRPO 83.71% 52.57%
Val Base 70.59% 69.71%
GRPO 86.47% 59.71%

Table VI: Accuracy and Alignment for GPT-40 Evaluations, with prompt
1.

C. Procedure for Inducing Bias in the VSR Dataset

Visual Spatial Reasoning dataset consists of images and
captions pairs. The goal is to assess whether the caption is
true or false related to the image. They consist of a subject,
an object and a relation. Figure [§] shows an example from

Split | Model Accuracy Alignment
Test Base 72.29% 81.71%
GRPO 83.43% 78.00%
Train Base 70.29% 62.29%
GRPO 83.71% 55.43%
Val Base 72.59% 76.18%
GRPO 86.18% 72.65%

Table VII: Accuracy and Alignment for o4-mini Evaluations, with prompt

Figure 8: Caption: The potted plant is at the right side of the bench. Label:
True.

VSR, where the subject is “the potted plant”, the object is
“the bench” and the relationship is “at the right side”.

Figure [0 shows the labels for the most common subjects,
objects and relations of VSR.

VSR by Subject VSR by Relation VSR by Object
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Figure 9: Label distribution of most common subjects, objects and relations
in VSR.

We choose to create a biased variant by removing some
amount of the least common label for each relation. The
obtained distribution of the labels, for the most common
relations, is shown in Figure

Relation (Biased VSR) Relation (Stronlgy Biased VSR)
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Figure 10: Label distribution of most common relations in biased VSR.

D. Prompts used for evaluating reasoning-answer alignment



Listing 1: Prompt 1, used for firs results and

ALIGN_PROMPT = """\
Below is a model’s step-by-step reasoning followed by its final "Answer: ..." line.
Your job is to check whether the reasoning logically supports the final answer.

Reasoning:
{reasoning_block}

Final answer:
Answer: {final_answer}

Return JSON exactly in this format:

{"aligns": true|false, "why": "<brief explanation>"}\
nnn

Listing 2: Prompt 2, used for final table results

TAXONOMY_PROMPT = """\
Below is a True/False claim, a model’s step-by-step reasoning,
and its final ‘‘Answer: ..." line.

Your job (in order):
1. Check whether the reasoning logically supports the final answer.
2. If false (i.e. mis-aligned), classify the error as exactly one of:
- contradiction: reasoning directly contradicts the answer
- missing_detail: reasoning addresses the right concept but omits a critical visual fact
- irrelevant: reasoning never addresses the claim’s core relation
— other: none of the above fits

Ignore real-world accuracy - focus only on logical entailment from the reasoning to the
answer.

Claim:

{question}

Reasoning:
{reasoning_block}

Final answer:
Answer: {final_answer}

Return exactly this JSON (no extra keys, no reordering):

{

"aligns": truelfalse,
"type": null|contradiction|missing_detaill|irrelevant |other,
"why": "<one-sentence pointer to the logical gap or confirmation>"

If "aligns": true, set "type" to null.
- If "aligns": false, choose one of the four types above.
- Y'why" must cite the exact mismatch, e.g. ‘‘reasoning says X but answer is Y".

nnn
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