Extending Hessian-Aware Scaling of Gradient
Descent

Arthur Pollet 325074 — Mikula§ VanouSek 394827 — Matya Aydin 388895

Abstract—Gradient descent’s performance depends heavily on
the learning rate. Recent work has demonstrated that conver-
gence with a unit step size can be achieved by incorporating
second-order information, specifically through a Hessian-aware
scaling technique called MRCG. In this report, we build upon this
approach by introducing a stochastic variant. We also incorporate
momentum and a preconditioned update direction.

I. INTRODUCTION

Gradient descent is a widely used optimization algorithm.
However, choosing an appropriate step size remains a key
challenge. Incorporating second-order information can reduce
sensitivity to the step size, improving convergence. In this
report, we review relevant prior work and describe how we
extend it. Finally, we present empirical results demonstrating
the effectiveness of our approach.

II. PREVIOUS WORK
A. Optimization and Gradient Descent
We begin by recalling the framework established in [[1],
where we wish to minimize a function f:

min f(x) ey

x€R4

Gradient descent performs iterative updates:

Xp+1 = Xp — Y6 V.f(Xk)

Here, v}, is the step size (also called the learning rate). In most
practical applications, particularly in non-convex settings, if
the step size is chosen correctly, gradient descent converges
to a stationary point. However, choosing the right step size is
challenging: If 7 is too small, progress will be slow, requiring
many iterations. If vy is too large, the algorithm may overshoot
the minimum or even diverge entirely.

B. Hessian Aware Scaling

To address this issue, one can use second-order information
— that is, how the gradient itself changes — to adaptively
choose better step sizes. This involves analyzing the curvature
of the function, which gives us insight into how steep or flat
the landscape is around a point.

Curvature affects how we adjust step sizes during opti-
mization. Strong positive curvature (SPC) indicates a steep,
bowl-shaped region where gradients change rapidly—small
steps should be performed. Limited positive curvature (LPC)
corresponds to flatter regions where gradients vary slowly,
allowing for larger steps. Negative curvature (NC) occurs
near saddle points, where the surface curves downward in

some directions—naive gradient descent may become unstable
here, and special care is needed to escape efficiently. The
MRCG [1] algorithm (see uses efficiently computed es-
timates of curvature to determine the step size (see [I)).

In the SPC case, we use one of three possible scalings:

2 H
_ lel* e _ (eHe) o

CcG
s , S ==
(g, Hg) |Hg||?

or

sEM — \/gMRgCG — ||I§||| 3)
g

The scaling s draws inspiration from Conjugate Gradient
(CG). It results from minimizing the local quadratic approx-
imation under the constraint that the direction p is in the
direction opposite to g:

JH
min (p,g) + (p.Hp)
p=—sg 2

“4)
The scaling s™% uses the same constraint but minimizes
|[Hp + g]|?. It draws inspiration from Minimum Residual
(MR). Equation [3| is the geometric mean between these two
quantities. We choose between these three scalings randomly,
as seen on line 5 of Algorithm [I]

The condition (g, Hg) > o||g||? gives a lower bound on
the curvature of f along the direction of g. Hence o defines
the threshold between strong and weak curvature. It acts as a
Lipschitz gradient constant and % upper bounds the step size
in the SPC and LPC cases. Finally, we know (g, Hg) < 0 if
H means curvature of f is negative around x.

The MRCG algorithm only uses second-order information
for the scaling in the SPC case. Crucially, we do not need to
compute the full Hessian H, as the scaling only depends on
Hg, which can be computed efficiently (see jax. jvp).

Once the scaling is set, we use line search to adapt the step
size « for global convergence, this can be done by ensuring
that the Armijo condition is satisfied:

f(x+ap) < f(x) + pa(p, g) 5)

With p € (0, 3), a hyperparameter that controls by how much
f will decrease after selecting o with line search. In fact, by
construction, we have (p,g) < 0. The complete algorithm is
presented in Algorithm 2| 6 is a hyperparameter controling the
decay of the selected step size in Algorithm 3| and its growth
in Algorithm []

https://docs.jax.dev/en/latest/_autosummary/jax.jvp.html

III. EXTENSIONS
A. Stochastic Variant of MRCG

The original Hessian-aware method, as presented in Sec-
tion [} relies on access to the full gradient V f(x) and the
full Hessian V2 f(x). While this is feasible for small-scale
problems or synthetic experiments, it quickly becomes com-
putationally expensive or intractable for large-scale machine
learning tasks. To overcome this limitation, we propose a
stochastic extension of MRCG.

In stochastic optimization, rather than computing the gradi-
ent and Hessian over the entire dataset, we approximate them
using a randomly sampled mini-batch of data. Formally, given
a dataset D = {(a;, b;)}7; and a loss function ¢(a, b; x), we

define:
Y (x) ZVE a;, b;; x)
‘B‘ i€B
VQ ZVQ alablvx)
‘B‘ ieB

where B C D is a mini-batch sampled uniformly at
random at each iteration. Under standard assumptions, these
are unbiased estimators of the full gradient and Hessian, and
they significantly reduce the computational cost.

B. First-Order Hessian Approximation

Drawing inspiration from [2], we can use the sum of the
previous (stochastic) gradients to approximate the diagonal of
the Hessian in Algorithm [I] as:

ViGelr 0 0 -1
=] 0 VR ©)

0

0 -0 G

With [Gila = El olg:]3- This approximation enables fast
computation of Hessian-vector products in O(d) time via
element-wise multiplication, and only the diagonal entries are
stored, ensuring memory efficiency. Note that this diagonal
approximation yields a strictly positive definite matrix, which
avoids issues of singularity. For comparison, we also consider
an alternative variant where we accumulate the raw gradients:
[Gzlam] j = Zf:o[gi]j- Although neither approach yields a
true second-order method, both serve as first-order approxi-
mations to the curvature. We compare these two strategies in

Section

C. Momentum

A straightforward extension is adding momentum by replac-
ing pjr with an exponential moving average of the previous
iterates:

Pr = BPr—1+ (1 — B)px

Results are presented in Section

D. Preconditioned direction

Drawing inspiration from [3l], we can replace the output of
Algorithm [I] with a rescaled version, using a moving average
of the second-order moment given by Equation [6}

- Pk
=— (7)
Px BHy_1+ (1—B)gi +¢€

where the division is taken element-wise, as H L—1 1s a vector
and € is a small tolerance set to 10~ to avoid division by
zero. This rescaling adjusts the update direction by penalizing
ill-conditioned coordinates, which can otherwise slow down
convergence. As a result, it tends to favor larger step sizes in
well-scaled directions during the line search. We evaluate the
impact of this preconditioning in Section [[V-E]

IV. RESULTS
A. Reproducing MRCG

We reproduce the multi-class #o-regularized logistic-
regression benchmark from [[L]. Figure [1| shows that our im-
plementation of MRCG decisively outperforms fixed-step GD,
Armijo line-search GD, and Heavy-Ball. However, the Adam
optimizer outperforms MRCG. Crucially, MRCG achieves this
performance without any hand tuning or prior knowledge of
problem constants.

For complete reproducibility, including dataset preprocess-
ing, the oracle-call accounting scheme, and every hyperparam-
eter—see Appendix

CIFAR-10 logistic regression

2.3x10°
2.2x10°
2.1x10°

2x10°

1.9 x10°

Objective value

1.8x10°

—— MRCG

Heavy-Ball
— GD

—— Line-search GD
—— Adam

10° 10t 10?2 10% 10* 10°
Oracle calls

17 x10°

1.6 x 10°

Fig. 1. Optimizers performance comparison

B. Stochastic Variant of MRCG

We compare stochastic gradient descent (SGD) to a stochas-
tic version of MRCG on Scikit’s (California Housing dataset.
The hyperparameters used are the same as in Section
We run the optimizers for 100 iterations using various batch
sizes.

Figure [2] shows that low batch sizes lead to slower con-
vergence in the objective value. Both algorithms converge
monotonically with batches of size 5% of the dataset or higher.
In this scenario, MRCG clearly outperforms SGD. Below 5%,
SGD is less likely to produce updates that worsen the objective
value. This confirms that stochastic approximations retain most
of the benefits of Hessian-aware scaling while being scalable
to larger datasets. Calculating the updates on the full dataset

https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset

— SMRCG 0.1%
—— SMRCG 0.5%
—— SMRCG 1.0%
—— SMRCG 5.0%
—— SMRCG 10.0%
—— SMRCG 50.0%

M ﬁ/
@) B 100

teration

— 56D 0.1%
10°] — sGDo.5%

—— 56D 1.0%
— 56D 5.0%
—— 56D 10.0%
— 56D 50.0%

o 20 0 60 80 100
teration

Fig. 2. Comparison of objective value convergence for different batch sizes
for S-MRCG and SGD. The optimizer updates are stochastic, but the loss is
calculated over the full dataset.

Objective value for each Hessian

—— Plain AdaHessian
2.14 Squared AdaHessian
—— Full Hessian
2.04
[
=
©
> 1.9
[
=
©
2 1.8+
o)
[e]
1.7 4
1.6
T T T T T
10t 102 10° 104 10°
Oracle Calls

Fig. 3. Comparison of loss curves using different Hessian approximations

offers little benefit over the batch sizes of 10%, while being
10 times more computationally expensive.

C. First-Order Hessian Approximation

Figure [3] uses the same framework as in Section [V-A]
The original MRCG algorithm requires fewer oracle calls
overall. However, we observed shorter execution times for
Hessian approximations. By only approximating the Hessian,
we limit our ability to recognize SPC. Finally, as the problem
is strongly convex, using the squared sum of the gradient yields
better results than the plain sum, as it more accurately captures
the Hessian’s curvature.

D. Momentum

Figure [4] shows that adding momentum does not help
convergence. We can draw similar conclusions to those in
Section [V-C} Using an exponential moving average of the
gradients instead of the raw gradient introduces a contradiction
between the way the scaling is selected in Algorithm [I] and
the step size that is selected by one of the line searches.

Objective value for different B

2.3+ —— Momentum, B =0.5
224 Momentum, 8 =0.9
—— Momentum, 8 =0.99
o 211 —— Momentum, =0
=3
S 20+
4
2
£ 1.9
2
S 1.8
1.7 4
1.6 4
T T T T T
10t 102 10° 104 10°
Oracle Calls

Fig. 4. Loss with different momentum values

Impact of adaptative scaling

— B=0.9
B=0.99
—— No scaling

2.2 4

2.14

2.0

1.9 4

1.8

Objective Value

1.7 4

1.6 4

T T T T T
10t 102 10° 104 10°
Oracle Calls

Fig. 5. Loss for different adaptative scalings

However, the loss remains monotonically decreasing, and all
configurations converge to the same final value after 10° oracle
calls.

E. Preconditioned direction

Figure [5| shows that varying (3 in the preconditioned direc-
tion defined in Equation [7] does not yield better performance.
Despite producing larger step sizes in practice, modifying p
coordinate-wise breaks its optimality given by Equation [
These bigger step sizes might also explain the gap present
after 10° oracle calls.

V. CONCLUSION

We successfully reproduced the MRCG algorithm and in-
vestigated several extensions to enhance its practicality. Our
results indicate that a stochastic variant effectively scales the
method to large datasets while largely preserving its perfor-
mance benefits. Furthermore, employing a first-order Hessian
approximation presents a promising trade-off, offering faster
computation with a negligible loss in accuracy. Conversely,
incorporating momentum or preconditioned directions proved
counterproductive, as these modifications conflict with the
algorithm’s core mechanism of estimating curvature to set the
step size. Future work could explore developing coordinate-
specific scaling derived from the Hessian to further improve
performance.

(1]

[4]

REFERENCES

O. Smee, F. Roosta, and S. J. Wright, “First-ish Order
Methods: Hessian-aware Scalings of Gradient Descent,”
Feb. 2025, arXiv:2502.03701 [math]. [Online]. Available:
http://arxiv.org/abs/2502.03701

J. C. Duchi, E. Hazan, and Y. Singer, “Adaptive
subgradient methods for online learning and stochastic
optimization,” Journal of Machine Learning Research,
vol. 12, no. 61, pp. 2121-2159, Jul. 2011, published
July 2011; submitted March 2010, revised March
2011. [Online]. Available: |https://www.jmlr.org/papers/
volume12/duchil 1a/duchil 1a.pdf

D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014, dec.
22, 2014. [Online]. Available: https://arxiv.org/abs/1412.
6980

B. A. Pearlmutter, “Fast exact multiplication by the
Hessian,” Neural Computation, vol. 6, no. 1, pp. 147—
160, 1994. [Online]. Available: https://doi.org/10.1162/
neco.1994.6.1.147

A. Krizhevsky, “Learning multiple layers of features from
tiny images,” University of Toronto, Tech. Rep. Technical
Report TR-2009, 2009, dataset available at https://www.
cs.toronto.edu/~kriz/cifar.html. [Online]. Available: http://
www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf]
Y. Nesterov and B. T. Polyak, “Cubic regularization of
Newton method and its global performance,” Mathemat-
ical Programming, vol. 108, no. 1, pp. 177-205, Aug.
2006.

D. P. Kingma and J. Ba, “Adam: A method for
stochastic optimization,” in Proceedings of the 3™
International Conference on Learning Representations
(ICLR), May 2015, arXiv:1412.6980. [Online]. Available:
https://arxiv.org/abs/1412.6980

http://arxiv.org/abs/2502.03701
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1162/neco.1994.6.1.147
https://doi.org/10.1162/neco.1994.6.1.147
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://arxiv.org/abs/1412.6980

APPENDIX

Algorithm 1 Hessian-aware Scaling Selection

1: Inputs: Gradient g, Hessian H, and SPC scaling tolerance
o> 0.
Set the range for LPC scaling as sL2¢ € (0,1/0).
Set the range for NC scaling as 0 < s < sNC < oo,
if (g, Hg) > o ||g|” then

choose s97C € {sMR sCG sOMY get p = —55FPCg,

set FLAG = SPC.
6: else if 0 < (g, Hg) < o|/g||” then

7: choose s'PC € [sEPC 1/0], set p = —sEPCg, set
FLAG = LPC.
8: else
: choose snc € [sNC, sNC], set p = —sVCg, set FLAG
= NC.
10: end if

11: Return p, FLAG.

Algorithm 2 MRCG: Scaled Gradient Descent With Line
Search
1: Input: Line search parameter p < 1/2, termination
tolerance €4 > 0.
2: while ||gi|| > ¢, do
3: [Pk, FLAG] < Call Algorithm [1] with Hy, gy and o
4 For FLAG = SPC/LPC, use Algorithm [3|to find oy, €
(0, 1] satisfying [5} For FLAG = NC, use Algorithm {4 to
find oy, € (0, 00) satisfying
5: Xk+1 = X + axPk
6: end while

Algorithm 3 Backward Tracking Line Search

1: Input: Initial step size ap = 1, Scaling parameter 0 <
0 <1.
< O
while [3] is not satisfied do
a <+ o
end while
return «

A

3

A. Oracle-call complexity measure

We plot every method’s objective value against the total
number of oracle calls, following standard practice in opti-
mization. One forward evaluation of f costs 1 call; computing
Vf costs one additional call (total 2); a Hessian—vector
product costs two additional calls (total 4) [4]. Counting oracle
calls instead of wall-clock time removes the influence of
implementation details and hardware.

B. Multi-class logistic regression on CIFAR 10

a) Dataset and preprocessing: We use the 50000 train-
ing images of CIFAR 10 [3].

Algorithm 4 Forward/Backward Tracking Line Search
1: Input: Initial step size ag = 1, Scaling parameter 0 <

0 <1.
< Qo
if B is not satisfied then

Call Algorithm [3]
else

while [3 is satisfied do

a<+— /b

end while

return fo
end if

R A A A T o

—
4

b) Objective: Let D = {(a;, b))}, C R4 x {1,...,C}
denote the training set. For each class ¢ € {1,...,C} we
introduce a weight vector z. € R (the final component
is the bias). We fix the last class as the reference by setting
xc = 0 and optimise

X = [x],...,x5 4] € RI@-D,

With A = 10~2 the regularised cross-entropy objective is
n C-—1 A
f(X) = 1[b; = c| (—logsoftmax(xc7 ai)) +3 X2,

i=1 c=1

where

exp((xc, a;))
C
Z exp(<xj, a1>)

We initialize at zp = 0 and include the bias term in every
class’s weight vector.

softmax(x, a;) = and x¢ =0.

c) Convexity and smoothness surrogates: With the
Frobenius bound || A[|% > omax(4)?,
C-1
Mapprox = A, Lapprox = W”A”% A

d) Common stopping rule: Optimization stops when
|V £(xk)|| < 107* or after 10° oracle calls, whichever comes
first.

e) Hyperparameters:

« Fixed-step GD: o = 1/L,pprox-
o Line-search GD: Armijo backtracking with p = 1074,

0 = 0.5, and initial step cvg = 1.

« Heavy-Ball momentum [6]:

. 4 ﬁ . (\/ Lapprox - \/,Ufapprox>2
(Lapprox + \/,uapprox)2 , Lapprox + /Happrox

e Adam [7]: 81 = 0.9, By = 0.999, ¢ = 10~% and
step size a = 1072 (largest power of ten yielding stable
convergence).

o Scaled-gradient methods: we set o = 0 (strong convex-
ity) and use the same backtracking parameters (p, 6) as
line-search GD.

	Introduction
	Previous Work
	Optimization and Gradient Descent
	Hessian Aware Scaling

	Extensions
	Stochastic Variant of MRCG
	First-Order Hessian Approximation
	Momentum
	Preconditioned direction

	Results
	Reproducing MRCG
	Stochastic Variant of MRCG
	First-Order Hessian Approximation
	Momentum
	Preconditioned direction

	Conclusion
	Appendix
	Oracle-call complexity measure
	Multi-class logistic regression on CIFAR10

