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Abstract

Large language models (LLMs) hold much po-
tential in education, especially in knowledge
assessment. However, multiple-choice ques-
tion answering (MCQA) remains a challeng-
ing task due to the need for precise reason-
ing and eliminating distractors. Modern LLMs
are becoming better at similar tasks; however,
there is a need to enhance the capabilities of
smaller, more compact models to achieve better
accuracy. We investigate ways to increase the
accuracy of Qwen3-0.6B-Base model through
multiple techniques, such as Supervised Fine-
Tuning (SFT), Retrieval Augmented Genera-
tion (RAG) and Direct Preference Optimization
(DPO). To further support feasible deployment,
we also explore different quantization methods
to reduce model size while minimizing the loss
in accuracy.

1 Introduction

To adapt general-purpose LLMs to a specific down-
stream task, previous work has shown that few-shot
learning (Brown et al., 2020) and fine-tuning can
yield good results. In particular, STEM-related
questions require logical and numerical reason-
ing, factual accuracy, and the ability to distinguish
between closely related options. Therefore, in-
context examples and alignment are crucial.

One of the widely used methods to enable con-
textualization is retrieval-augmented generation
(RAG) (Lewis et al., 2021), which incorporates
external knowledge by pulling information from
static databases. However, since static databases
are created in advance, retrieved examples may not
always align with the input question.

To address the limitations of relying only on
external databases, Supervised Fine-Tuning (SFT)
offers a different approach. Unlike few-shot learn-
ing, SFT enables the model to internalize domain-
specific knowledge during training. Furthermore,
embedded knowledge results in faster and more

consistent inferences, making the SFT model more
suitable for our constrained educational setting.

However, SFT requires large amounts of high-
quality data to create an LLM with capabilities
better aligned with human conversation. Rein-
forcement Learning with Human Feedback (RLHF)
(Ouyang et al., 2022) offers strong alignment ca-
pabilities; however, its training is often unstable
(Wang et al., 2023). Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2024) has become a
widely used algorithm for post-training alignment
(Jiang et al., 2024; Qwen et al., 2025; Grattafiori
et al., 2024) and can leverage human preference
data.

2 Approach

2.1 Supervised Fine Tunning (SFT)

We adopt a two-stage SFT approach to fully adapt
the Qwen3-0.6B-Base model to our downstream
MCQA task.

Stage 1: Preparation stage In the preparation
stage, we aim to enhance the model’s reasoning
capability and factual grounding across STEM-
related questions. This stage serves as a founda-
tional step before further alignment for MC-style
answering.

Stage 2: MCQA alignment The second stage
(Stage 2) further aligns the model to the MCQA
format. Here, each input consists of a question
and the possible choices to choose from. Since
we are evaluated on multi-token prediction (see
Section 3.1), we provide the correct label and the
corresponding answer text as the target output. This
formulation encourages the model to generate a
justification in line with the ground-truth choice.

2.2 Quantization

Quantization can significantly reduce the memory
requirements of large language models, making



them more practical for deployment on resource-
constrained devices. However, this typically comes
at the cost of reduced performance. Our objective is
to improve the ratio of task performance (measured
as accuracy on MCQA) to peak VRAM usage of
the SFT model described above.

We base our choice of quantization strategies on
an empirical study (Zheng et al., 2025), which pro-
vides a thorough comparison of various techniques.
From their findings, we select three strong candi-
dates. SmoothQuant (Xiao et al., 2024), which
applies 8-bit quantization to both weights and ac-
tivations, and 8-bit weight-only GPTQ (Frantar
et al., 2023), both offer nearly a 50% reduction in
memory usage with minimal loss in accuracy. In
contrast, the 4-bit GPTQ variant allows for even
greater memory savings, using less than one-third
of the original model’s memory, but is expected to
result in a more noticeable drop in performance.

To ensure compatibility with the Hugging Face
ecosystem and the LightEval evaluation framework,
we use the llm-compressor library. This allows
us to quantize the model and upload it directly to
the Hugging Face Hub.

2.3 Direct Preference Optimization (DPO)

Our DPO model is also trained in two stages. The
first stage consists of SFT on high-quality open-
answer data. This stage is crucial for ensuring
sentence coherence and for learning how to con-
clude answers, that is, to respond concisely when
a longer reply is unnecessary. The second stage
applies DPO to improve the structure of answers.

We follow the post-training approach of
SmolLM2 (Allal et al., 2025), using the same hyper-
parameters while employing similar datasets, but
place greater emphasis on STEM subjects. This
allows us to train longer with more data and place
less emphasis on hyperparameter fine-tuning.

2.4 Retrieval Augmented Generation (RAG)

Our RAG model is composed of a retriever and a
generator, both optimized for STEM-related top-
ics. For generation, the MCQA model is used.
The retriever uses an embedding model based on
sentence-transformers/all-MiniLM-L6-v2 (Wang
et al., 2020) and fine-tuned for retrieval. The same
model is used for both query and document em-
bedding. The dataset consists of a selection of
STEM-related datasets, processed for efficient re-
trieval.

3 Experiments

3.1 SFT

Data collection For Stage 1, we collected pub-
licly available datasets containing STEM-related
open-ended questions with their corresponding
detailed, reasoning answers. The datasets were
selected based on their permissive licenses and
STEM coverage, such as math, physics, computer
science, chemistry, and biology, see Table 1.1 For
Stage 2, we combined 5 diverse MCQA datasets,
see Table 2 2.

Dataset Name # Samples

PubMedQA (Jin et al., 2019) 810
physics-scienceqa (Johannes Welbl,
2017)

657

gsm8k (Cobbe et al., 2021) 6,726
orca-math-word-problems-200k (Mitra
et al., 2024)

12,960

merged_physicsqa (Jin et al., 2019) 8,100
Aqua-RAT (Ling et al., 2017) 10,800
R1-Distill-SFT (Madhusudhan et al.,
2025)

3,240

Total 43,293

Table 1: Stage 1 datasets: used for reasoning pretraining

Dataset Name # Samples

ARC-Challenge (Clark et al., 2018) 1,056
openbookqa (Mihaylov et al., 2018) 4,788
MMLU (Hendrycks et al., 2021a)
(Hendrycks et al., 2021b)

14,764

medmcqa (Pal et al., 2022) 26,752
sciq_physicsqa (Johannes Welbl, 2017) 11,548

Total 58,908

Table 2: Stage 2 datasets used for MCQA alignment

Data Preprocessing In Stage 1, only the prompt
was reformatted to train reasoning ability; the target
labels remained unchanged. In Stage 2, we adopted
the exact format of the evaluation suite (see A.1 and
A.2).

Since public datasets vary in format, additional
preprocessing was required for Stage 2. We se-
lected multiple-choice datasets with at least four
options and filtered them to exactly four. To stan-
dardize answer formats, we converted indexed la-
bels (e.g., 0 = A, 1 = B) to letter-based labels. Fi-
nally, to prevent bias from imbalanced answer dis-

1Note that not all gathered datasets were used in full;
instead, we selected a subset to prevent data imbalance
and limit excessive data, see https://huggingface.co/datasets/
publication-charaf/MNLP_M3_mcqa_dataset_oa

2https://huggingface.co/datasets/publication-charaf/
MNLP_M3_mcqa_dataset

https://huggingface.co/datasets/publication-charaf/MNLP_M3_mcqa_dataset_oa
https://huggingface.co/datasets/publication-charaf/MNLP_M3_mcqa_dataset_oa
https://huggingface.co/datasets/publication-charaf/MNLP_M3_mcqa_dataset
https://huggingface.co/datasets/publication-charaf/MNLP_M3_mcqa_dataset


tributions, we undersampled each dataset to ensure
an equal 25% representation for all four choices.

To ensure reliable evaluation and maximize
training performance, we use the standard train-
validation-test split strategy. If the chosen dataset
originally includes those splits, then they are pre-
served. If either validation or test splits are missing,
then we use 10% of the training set for that purpose.

Evaluation method

Selection of the best reasoning model To iden-
tify the most suitable model for downstream
MCQA alignment, we evaluated four candidate
models trained on open-ended reasoning tasks, two
with the highest BLEU/ROUGE-L scores, one with
the lowest scores, and one with intermediate per-
formance, see Table 3.

We find that the best OA model for downstream
MCQA performance is the intermediate one that
balances general reasoning ability with the poten-
tial transferability to the structured MCQA format
(highlighted with yellow on the Figure 3).

Final model evaluation The final evaluation
was conducted using a task-specific metric: log-
probability-based multiple-choice accuracy. This
metric assesses whether the model assigns the high-
est log-likelihood to the correct option among the
choices, providing a more direct measure of MCQA
performance than generative metrics.

Evaluation datasets We evaluated our models on
test splits of the selected datasets. In case of Stage
1, it added up to 5, 700 datapoints. For Stage 2, the
main evaluation set contained 7, 526 questions.

Baselines We use Qwen3-0.6B-Base as our base-
line and as the base model for all fine-tuning. We
also compare our best model with the post-trained
Qwen3-0.6B, as well as with larger models with
the same architecture. Task-oriented fine-tuning
makes smaller models outperform larger ones on
specific tasks.

3.2 Results
Selecting the best model We trained models us-
ing only a single-stage approach that directly trains
on the MCQA task (Stage 2), and also the previ-
ously defined two-stage approach. We evaluated
both types of models across various learning rates
and epoch settings. The two-staged models were
built on top of four different base models, as previ-
ously defined. We found that single-stage training

also yields advanced performance (outlined in Fig-
ure 1), with an accuracy of 57.2%, reached with
the learning rate of 1e− 6 and trained for 7 epochs.

Figure 1: Single-stage models using different learning
rates and epochs

For the two-staged models, the accuracy differs
based on the chosen base model and the hyperpa-
rameters of the post-tuning. Overall, the highest
accuracy of 57.7% is achieved using the intermedi-
ate base model, fine-tuned with a learning rate of
1e− 5 over 3 epochs.

Comparing our Models
Hyperparameters Accuracy

lr=1e-05, e=3 57.6%
lr=1e-07, e=1 56.6%
lr=0.0001, e=3 53.0%
lr=0.0001, e=5 50.6%

Comparing with the Baselines
Model Accuracy

Qwen3-4B 68.4%
MNLP_M3_mcqa_model 57.6%
Qwen3-1.7B 57.0%
Qwen3-0.6B-Base 50.9%
Qwen3-0.6B 41.2%

Table 3: Accuracy comparison of fine-tuned and base-
lines from the Qwen family.

Overall high-level evaluation We compare our
best models against each other and with the base-
line models. Table 3 illustrates that our best MCQA
model achieves substantial improvements over the
baselines. It is outperforming our main baseline
(Qwen3-0.6B-Base) with more than 7% and the
official post-tuned version (Qwen3-0.6B) by more
than 17%. Notably, it is also 1% better than the
Qwen3-1.7B, a model approximately three times
larger.

3.3 Quantization
All techniques are calibrated using 2048 sample
questions and answers from the training dataset
described in 3.1. We pad all sequences to 512



tokens (as opposed to 2048 during evaluation) as it
significantly speeds up the calibration (complexity
of attention is square), and we found it sufficient
for accurate results. We group the weights and
activations into blocks of size 128.

The evaluation closely resembles the evaluation
of the MCQA answering model described in 3.1.
The GPU sharing model of Gnoto makes it chal-
lenging to profile GPU usage. We therefore use
Nvidia Tesla V100-PCIE-32GB to benchmark our
quantization techniques. You can see the results in
Table 4.

Method MMLU Size (MB) Score
Baseline 16w16a 58% 1 500 3.9
SmoothQnt 8w8a 57% 1060 5.4

GPTQ 8w16a 57% 1060 5.4
GPTQ 4w16a 55% 850 6.5

Table 4: Comparison of the quantization techniques.
The score is calculated as the ratio between accuracy
and size.

We measured memory footprints of the quan-
tized models, but it was nearly identical for the
quantized models. This is particularly unexpected
in the case of the 4-bit and 8-bit GPTQ variants,
where we would typically expect a substantial re-
duction in memory usage. A likely explanation
is that the Tesla V100 GPU only supports mixed-
precision computation with FP16 via Tensor Cores
and lacks native support for lower-precision for-
mats. As a result, it fails to leverage the perfor-
mance and memory benefits of the quantized mod-
els. On Gnoto, profiling while sharing the GPU
with another user proved to be a significant chal-
lenge. For this reason, we decided to estimate the
memory usage by the model’s size, although this
disadvantages the Smoothquant technique.

3.4 DPO

Dataset Name # Samples

Code Vulnerability Security DPO 466
M1 preference pairs 2,424
Stem DPO 5,000
Math step DPO 5,397
UltraFeedback (Cui et al., 2023) 30,567

Total 43,854

Table 5: DPO training dataset composition

Data We employ a subset of SmolTalk (Allal
et al., 2025) during the SFT phase.3 It contains

3In particular, we combine these splits: everyday-
conversations, longalign, metamathqa-50k, numina-cot-100k,
openhermes-100k, self-oss-instruct and smol-constraints.

subsets of existing open-source corpora used in
training of SmolLM2 (Allal et al., 2025) and ranges
from conversational data to instruction following,
including technical content.

For the DPO phase, we draw on a balanced mix
of preference-pair datasets to refine our model’s
judgments. Stem DPO is composed of student-
level STEM answers, ensuring coverage of high-
school-level problem solving. The M1 preference-
pairs dataset contains samples distilled from a
larger reference model. To further strengthen math-
ematical reasoning, we incorporate Math step DPO,
and to improve secure coding practices, we include
Code Vulnerability Security DPO. Finally, we use
UltraFeedback (Cui et al., 2023), which provides a
wide variety of content for human alignment. This
selection balances technical content, reasoning, and
conversational capabilities.

Evaluation method We evaluate using both
quantitative and qualitative methods: accuracy
is measured with LightEval on a mixed set of
test and unseen training data, and we compare
Qwen3-0.6B-Base and DPO model responses on
selected queries.

Experimental details We apply SFT to
Qwen3-0.6B-Base for 2 epochs with a learning
rate of 3e-4, batch size 8, and standard cross-
entropy loss. Building on the SFT model, DPO
training runs for 2 epochs, using a learning rate
of 1e-6, batch size 4, and the original DPO loss
(Rafailov et al., 2024) with β = 0.5, using the SFT
model as the reference. Both phases use cosine
learning rate decay with 10% warmup and the
AdamW optimizer (Loshchilov and Hutter, 2019)
(β1 = 0.9, β2 = 0.999, weight decay 0.01).

Results Quantitatively, our DPO model outper-
forms all baselines, including Qwen3-0.6B-Base,
the MCQA model, and our SFT model trained on
smoltalk, by achieving 64% accuracy on our lighte-
val DPO evaluations, whereas the baseline mod-
els achieve only about 48%. It has improvements
between 5% and 23%. Overall, we see that we
improve the performance of our model through
training, but see some regression on math-step-dpo
dataset in particular.

While the base model will start to deteriorate
when prompted with an unseen question after a few
number of tokens before collapsing in an endless
repetition, our DPO model shows better text co-
herence and can answer most STEM questions we

https://huggingface.co/datasets/CyberNative/Code_Vulnerability_Security_DPO
https://huggingface.co/datasets/thewordsmiths/stem_dpo
https://huggingface.co/datasets/xinlai/Math-Step-DPO-10K
https://huggingface.co/datasets/thewordsmiths/stem_dpo
https://huggingface.co/datasets/xinlai/Math-Step-DPO-10K
https://huggingface.co/datasets/CyberNative/Code_Vulnerability_Security_DPO


have tried.
Overall, we observe a remarkable improve-

ment over Qwen-0.6B-Base both quantitatively
and qualitatively, demonstrating that our training
approach enhances the base model.

3.5 RAG
Data The dataset used for the RAG model is a
selection of STEM-related documents. Initially,
we tried using the Wikipedia dataset, but faced
significant challenges in terms of relevance, as it
contained proportionally very little STEM-related
content. Given limits of 100,000 documents and
512 characters, ensuring the relevance of every
document was critical. To address this, we pivot to
more focused datasets, such as the SciFact dataset
(Wadden et al., 2022), which provides scientific
claims and evidence, and the Wikipedia dataset
curated by Laz4rz (Laz4rz, 2024).

Evaluation method and Baselines The evalua-
tion method for the RAG model is identical to that
used for the MCQA model, as both models address
the same task. The base Qwen model and its fine-
tuned version are used as baselines for the RAG.
These provide a direct comparison to evaluate the
added value of our RAG in improving contextual
answering.

Results The final RAG model shows marginally
better performance than the MCQA model, achiev-
ing an accuracy of 58.6% compared to 57.5%.

Model Type acc% ±

Qwen Baseline 50.8 0.5
MCQA model 57.5 0.6
RAG w/ Baseline Models 50.7 3.1
RAG w/ Fine-tuned Retrieval 49.6 3.1
RAG w/ Fine-tuned Generator 58.2 3.0
RAG w/ Fine-tuned Models 58.6 3.1

Table 6: Performance comparison of RAG models. (All
models using the final document dataset.)

4 Analysis

4.1 MCQA
To explore further the strengths and weaknesses of
our model, we separately evaluated on all of the
benchmarks we are using in the Stage 2 dataset.
As it was merged from several datasets, evaluating
on them separately can help us identify which ar-
eas need to be improved. As seen in Figure 2, our
best model (orange) dominates the main baseline
(red) and competes with the Qwen3-1.7B (purple)

Figure 2: Comparing our best models with the baselines
across several benchmarks

base model. On benchmarks that are in-distribution
(those whose training splits the model has seen),
such as OpenBookQA, the MCQ-only model ex-
cels. However, for out-of-distribution datasets, our
best model is more robust, suggesting that a broader
training signal helps the model generalize beyond
familiar domains.

4.2 Quantization

As shown in Table 4, all quantization techniques
yielded models with accuracies within three per-
centage points of the baseline. This is a signif-
icantly better outcome than reported in previous
work, such as (Zheng et al., 2025). Especially sur-
prising was the effectiveness of the 4-bit GPTQ.
One possible explanation is that we used calibration
samples drawn from a distribution closely aligned
with the evaluation set, which may have led to more
effective quantization.

4.3 DPO

We generate output using temperature 0.7 and
top-k = 0.95. Our DPO model can provide rea-
sonable answers to most STEM questions, but it
often fails to stop generating text; it simulates a
new prompt, answers it, and repeats this process
indefinitely.

Question : How far is Geneva from Lausanne ?
Answer: depending on the mode of transportation ... (answering)
user
how long does it take for tuesday to sunday 4 days away
assistant
In order to calculate this duration based solely ...

The answer given before the user marker is al-
ways related to our initial question. From now
on, when we provide generation examples we only



display up to the user marker.
In this first example, we observe that the model

is able to solve simple math questions.
Question: A class composed of 12 girls and 10 boys was sent to the
library for their reading class. Their teacher found out that only
5/6 of the girls and 4/5 of the boys are reading. How many students
are not reading?

Answer: 10 = 8 boys read
Now, let’s add up all the students who are actually reading:
Total reading students = Girls + Boys = 10 + 8 ...(reasoning)

So, 4 students are not reading in this class.

It can handle MCQs well, including more chal-
lenging math problems, providing explanations of
reasonable length.

Question: Which of the following statements is correct
A: Given that the random variable X follows a (...)
B: E(2X + 3) = 2E(X) + 3, D(2X + 3) = 2D(X) + 3
C: The larger the linear correlation coefficient r (...)
D: Given that the random variable ξ satisfies (...)

Answer: For E(2X + 3) using ..., This matches option B perfectly.
Statement C: The relationship between [...]
Hence, option C is also incorrect since [...]
Statement D: Given P (ξ = 0) = x, P (ξ = 1) = (1 − x), [...]
Based on this analysis, the only correct choice is Option D, [...] the

final answer is encapsulated as D .

However, the explanations sometimes con-
tain logical errors and can be poorly format-
ted, despite the model getting the right answer.
Qwen-0.6B-Base on the other hand, is unable to
answer both questions and will start to output a
long monologue after some words.

Our model understands simple French questions
and sometimes gives the correct answer in En-
glish, whereas the base model answers in French
but with unrelated content. This shows that our
model would rather be accurate in the wrong lan-
guage than respond in the right language with a
completely incorrect answer.

4.4 RAG

The performance of the RAG model was heavily
influenced by the choice of the document set. Dur-
ing initial experiments with the Wikipedia dataset,
the model struggled to retrieve relevant documents,
resulting in an accuracy less than half that of the
baseline. By pivoting to more specialized datasets,
the model was able to retrieve contextually rele-
vant documents, reaching accuracies superior to
those of its constituent models. This shows that
the success of retrieval-augmented generation is
highly dependent on the relevance and quality of
the underlying document collection.

5 Ethical considerations

Despite its pre-training on multiple languages,
Qwen3-0.6B-Base has limited multilingual abil-
ity. As detailed in A.3, it is clearly biased toward

specific languages. This can be fixed by including
relevant data in other high-resource languages in
the post-training but we observe that most datasets
of quality are in English.

The primary beneficiaries are English-speaking
students and educators, particularly in STEM fields.
A small, accurate model can provide accessible,
automated knowledge assessment and personalized
learning experiences, especially in environments
with limited computational resources.

While the model is optimized for accuracy, it is
far from perfect. Incorrect answers, even if infre-
quent, could mislead students. Students should be
reminded to develop themselves, think critically
about the answers, and not to over rely on these
tools.

The training data certainly contains biases, and
the model could reflect and even amplify these
biases. For instance, if STEM questions are pre-
dominantly framed in a way that resonates more
with one cultural background, it could disadvantage
others. This is more likely to affect members of
minorities and already marginalized groups. Care-
ful evaluation of the dataset as well as the final
product, comparing impressions across the diverse
categories of potential users, should be conducted
to mitigate this.

Finally, our DPO training focuses on helpfulness.
For example, the model would likely comply with
requests to produce offensive content. Before real-
world deployment, it is crucial to address this.

6 Conclusion

In this work, we introduced a two-stage SFT
pipeline that first builds general reasoning ability
and then aligns the model to the MCQA task. This
approach leads to strong performance gains, with
our final model outperforming the larger Qwen3-
1.7B baseline. Quantization experiments revealed
that 8-bit quantization results in minimal quality
loss, offering an excellent trade-off between effi-
ciency and accuracy. We also discussed the training
methodology for a DPO model, which results in an
LLM capable of answering STEM questions. Ad-
ditionally, RAG provided a slight accuracy boost
on knowledge-intensive questions. In future work,
we plan to scale our approach to larger models,
enhance RAG with access to larger datasets, and
investigate multilingual capabilities.
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Figure 3: BLEU and ROUGE-L scores across different hyperparameters

A Appendix

A.1 OA question formatting

The following is a question about knowledge and skills in advanced master-level STEM courses.
Caleb and his dad went fishing at the lake. Caleb caught 2 trouts and his dad caught three times as
much as Caleb. How many more trouts did his dad catch compared to Caleb?

Answer: Caleb caught 2 trouts. His dad caught three times as much as Caleb, so his dad
caught 2 * 3 = 6 trouts.
To find out how many more trouts his dad caught compared to Caleb, we subtract the number of trouts
Caleb caught from the number his dad caught: 6 - 2 = 4 trouts.

So, Caleb’s dad caught 4 more trouts than Caleb.

A.2 MCQA question formatting

The following are multiple-choice questions (with answers) about knowledge and skills in advanced
master-level STEM courses.
Which characteristic property indicates that igneous rock cools slowly?
A. mineral composition
B. hardness
C. crystal size
D. density

Answer: C. crystal size

A.3 Non English Prompts

When prompting the base model Qwen3-0.6B-Base in another language, the model generates nonsense
in that language. Our DPO model, on the other hand, will answer in English based on its limited
understanding of the language in question. This is a real limitation of our model for non-English speakers,
and post-training with multiple languages should become a priority. However, the number of datasets
available for other languages is limited and often of lower quality.

To illustrate it, we will provide examples for translation of the sentence Marie has 4 Swiss francs and
buys an apple for 2 Swiss francs. How much money does she have left?

We always run the same prompt multiple times and try to capture the overall behavior.
First, we will look at the response for the English version.



Qwen3-0.6B-Base

Answer: had.
Step-by-step calculation: 1. Start with the initial amount of cash Marie has: $4. 2. Subtract the price of one apple (which costs =C2) from this total:
$4 - 2 = $0
So, Marie now has zero dollars in her pocket!

DPO model

Answer: the 2 Swiss francs on the apple, she will have:

4 (initial amount) - 2 (cost of apples) = 2 Swiss francs left.

We observe that the base model is not able to answer the question, but that our DPO model provides a
correct and concise answer.

For french, the question is Marie a 4 francs suisses et elle achète une pomme à 2 francs suisses.
Combien d’argent lui reste-t-il ?

Qwen3-0.6B-Base

Answer: e donc de payer ses dépenses avec l’argent qu’il conserve dans la banque.
1) A quelle somme le père met-il les euros ? a) b) c)
2) Quel est alors le montant de cet or ?

DPO model

Answer: A pompe costs 2 francs. - She buys 4 such pompes: 4 × $2 = $8.
2. Next, we need to determine the change that results from buying these 4 pomxes: - Initially, she had $4 in total. - After spending on 4 pomzes,
she has $0 left.
3. Finally, we find out how much money is remaining after all her expenses have been accounted for and then added back to what she started with: -
Starting amount of money: $4 - Spending (for 4 pomzes): $0

Therefore, Marie has $4 remaining.

Here both models fail; it is interesting to note that the base model tries to answer in French while our
DPO model will try some math computation but fails to find the right answer.

We also display the example for German, Hungarian, and Czech.
Maria hat 4 Franken. Sie kauft ein Apfel für 2 Franken. Wie viel Geld hat sie übrig?

Qwen3-0.6B-Base

Answer: die Menge dieser Flüssigkeit im Liter? Die Lösungsmittel in der Rechenkiste sind wie folgt:
| |sodiumchloride (NaCl) | lithiumiodide |–| –| |Haltungsgrad | 80 |Methode | - |
Lösungen auf den Stühlen
Der Kasten enthält drei verschiedene Sorte-Schale.
Sorte A: Die Schalen haben einen Durchmesser von 3

8
Meter und je nach Länge werden nur zwei davon benutzt (siehe Skizze).

Sorte B: Die Schalen haben einen Durchmesser von 7
16

Metern und jeder Stapel umfasst mindestens vier schlanke Stücke.
Eine Artikel kann auch sowohl aus **sorte**-A als auch sorte-B bestehen.
Es gibt genau fünf Artikel, deren Anzahl gemessen durch jeweilige Aufzählung erfolgte Zahlen nicht identisch sein muss:

0 ; 9 ; 2 ; 5 ; 7

DPO model

Answer: 10 ÷ 4 = 2 sein.

$10 − $2 = $8.

Aber wenn wir uns sagen, wie viele Friesel haben wir in Gartengarten, müssen wir den Preis der Pflätziggebung 5 + 3 + 7 + 9 + 6 = $32 anbieten.

$32 − $8 = $24.

Denn wir benötigen $24 durch die Fröhnspapier- und Kaffelette oder die Gartengartenpfetter- und Schmackstiefeln mit einer Tischwand. Danach erzeugen
wir eine Stelle als Teilnehmer bei einem Spiel der Einzelwerkstädte im Stadtteil des Vorsatzes München für eine Aufgabe von Überdenken oder Bekämpfung
eines Konfliktbewerbs. Der Kosten forzugeßen dann:

$32 − $10 = $22,

dann sie damit um Geld ausgingetzten.
Zusammen wären wir über den Einsatzsfürleben der Friedensverbreitung durch 2-Fünfeinheit betroffen.

2

5
× 32 = 12 Stellen

Bei dem Spiel gibt man jedoch nur 12 Stellen zu führen, aber die Verbraucher sind sich ganz entscheiden; daher kann diese Ausschließigkeit keinen
zusätzlichen Geld ausgeben, da wir doch mehr als 12 sehen möchten. Somit wird die einzelne Einzelwerkstädte in 3-Fächen eingregt oder unter anderem
namens angezeigt werden.

Marienak van 4 frankja, amiből 2 frankért almát vásárol. A vásárlás után mennyi pénze marad Marienak?

Qwen3-0.6B-Base

Answer: 10 x 3 = ..........
a) 6 francokból egy bilyánt és másik hét bolyót használhatunk többnapi fogyasztást? c) Bentónia megtétele az évtized alapítóinélkül néhány év múlva
ismertetésnek készült. Egyszerű módon eldönthette: ezek volták az emberek, akik nincs hányékra lehetett lenni! Vagyis benne legalább azt láttuk,
miután kihaszívultam ebben, hogy közben létezik még valami, ami jóságosabb: Még egymillió ember teljesítménye nem fog gyorsan nagyodni a legtöbbes
üzeneti eredményre!



DPO model

Answer: calculate the equivalent number of euros for both parts by multiplying them.
- For 4 francs:

4 × 0.857 ≈ 3.428=C

- For 2 francs:
2 × 0.857 ≈ 1.714=C

2. Next, add these two amounts together to find out how many euros the combined total is worth in terms of currency conversion:
- Combined value in Euros:

3.428 + 1.714 ≈ 5.142=C

Conclusion:
Thus, the combined total of 4 francs and 2 francs in euros is approximately 5.14 dollars (or 5.14) when converted using the exchange rate provided
above.

5.14

Marie má 4 švýcarské franky a koupí jablko za dva švýcarské franky. Kolik peněz jí zbývá?

Qwen3-0.6B-Base

Answer: avena celková cena pro tvarusky železnici vzdálenou od svého domu na druhé místo ve Střebském kraje (jako to byly stavy Mladá
Boleslav a České Budějovice), pak vybereme každého jednoho železničského hraze tak, že jeden ze dvou párů vákuňka je položena u jejich domova. Pokud
pojem řetězcích sestavujete: VYVEZIT JEDNOHO HRAZE DODOMU – ZESEŠTUPNĚNIK ODRÁŽENÍ TOHLEDA SECHILÝ CHAVSKÉ ORJENE! Prvním rukopisem jsme si vyplnili:
1) obchod - 380 =C; 2) útočení 95 =C;

DPO model

Answer: there are 3 pieces out of 5 that make up the whole amount):

Francs per glass =
3

5

2. **Calculate how many times more fraczy exist in four glasses:**
The total number of glases is given as 4, so we multiply the number of glasses by the fraction representing the additional items:

Additional items in four glasses = 4 ×
(

3

5

)
Simplify this expression:

4 ×
(

3

5

)
=

4 · 3
5

=
12

5

This gives us:

12

5

3. **Find the corresponding value in decimal form for clarity:**
Converting the fractional representation to decimal:

12

5
= 2.4

Conclusion: The final answer is:

2.4


