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School of Computer and Communication Sciences, EPFL, Switzerland

Abstract—Decoding visual stimuli from brain activity is
essential for understanding how sensory information is rep-
resented in the brain. Our study evaluates the performance of
decoding models in relation to the availability of training data
and recorded neurons, revealing critical trade-offs. Ablation
experiments further highlight the impact of architectural, data,
and training choices on decoding accuracy.

I. INTRODUCTION

Recent progress in machine learning (ML), together with
advances in tools for collecting large volumes of brain
activity data, has enabled powerful data-driven approaches
to model the brain. The dominant approach is to use ML
models to characterize the stimulus-response function, i.e.
predicting (encoding) brain activity in response to external
variables, such as visual stimuli [1], [2], [3]. Yet, the
inverse problem–decoding visual stimuli from brain activity–
garnered less attention but is crucial for revealing which
aspects of the visual scene are encoded in the brain, and is an
important component for a range of applications, including
visual neuro-prosthetics.

This report focuses on advancing the state-of-the-art of
decoding visual scenes from neural activity recorded in early
visual system. The main contributions are as follows:

1) We apply methods from [4] to a new dataset and
question and motivate some of the originally proposed
algorithmic decisions through ablations and more thor-
ough hyperparameter analyses.

2) We attempt to bring pre-trained generative and classi-
fication ML models to aid in this data-scarce domain.

II. DATA

The data comes from a primary visual cortex of 22 mice
and was originally introduced by [5]. The primary visual
cortex, also called V1, is one of the first stages of visual
processing in the brain. Neurons in V1 detect low-level local
visual patterns. The most salient aspect of the neural code’s
topological organization is the retinotopy: adjacent points of
the visual field are coded by adjacent regions of V1.

Each of the 22 mouse datasets is split into training, valida-
tion, and test sets of 4500, 500, and 40 samples, respectively.
A single datapoint consists of a grayscale image stimulus
sampled from the ImageNet dataset [6], and associated
evoked neuronal responses of around 8500 neurons from
a single mouse. The number of recorded neurons differs
between the individual mouse datasets. We refer the reader

to [5] for additional details. In the following sections, we
refer to these 22 datasets as B-1 to B-22, or collectively as
B-All when merged into a single dataset.

Unless stated otherwise, all our methods, analyses, and
results utilize only the mouse dataset B-6. We do so because
the test samples from B-6 most closely resemble the ones
shown in the original study ([5]). This choice allows for
direct visual comparison and validation of our implemented
baseline from the aforementioned paper, and also enables us
to perform more training runs, ultimately leading to more
in-depth analysis.

III. DATA PREPROCESSING

Below we describe our data preprocessing pipeline, which
we apply to each of the 22 datasets. We mostly follow
previous work in the area of brain activity modelling.

Images: We perform z-score normalization of the im-
age stimuli (zero mean, unit variance). For the technique
described in IV-D, we scale the images to 64 × 64 and 224×
224 px, the Stable Diffusion Variational Autoencoder and
ResNet50 input sizes, respectively. For all other techniques,
we scale down the images from the original 144 × 256 px
to 36 × 64 px, due to our limited computational resources.

Neuronal responses: The firing rates of different neu-
rons vary substantially, which can be detrimental to training.
To address this, we estimate the standard deviation of
individual neuron activity on the training set and then rescale
the neuronal responses by the inverse of these standard
deviation estimates.

IV. METHODS

We implemented two baseline methods, namely, a state-
of-the-art inverted encoder from [5], which was originally
applied to this particular mouse dataset, and a convolutional
neural network. However, our main focus is on a generative
adversarial network with a recently introduced input module
and two variants of autoencoder-based decoders.

A. Inverted Encoder

Encoder, in this context, refers to a convolutional neural
network that predicts the neuronal responses in response to
images. [5] was among the first studies to also use such an
encoder for the opposite task of decoding visual stimuli.

For this encoding model, the original authors used a 3-
layer CNN with a linear projection readout trained on B-
All. However, we found that a 4-layer architecture with a



Gaussian readout layer introduced by [2] performed slightly
better, and we used this version instead1.

Given such a pre-trained and frozen encoder model, the
main idea behind the inverted encoder (InvEnc) method
is to initialize an image with zero-valued or random nor-
mally distributed pixels and iteratively optimize their values
through gradient descent to minimize the mean squared error
between the predicted and ground-truth neural responses.
Additionally, [5] applied a Gaussian blur to the image gra-
dient at each optimization iteration to avoid high-frequency
noise in the final reconstructions.

As for the other methods described below, we find opti-
mal hyperparameters using FID on the validation set. The
hyperparameter search space can be found in the Appendix.

B. Convolutional Neural Network

Our second baseline is a convolutional neural network
(CNN) decoder with a fully connected input module, so-
called readin. First, it transforms the neuronal responses
using a linear layer, batch normalization, Leaky ReLU
activation function, and dropout (in this order). Then, the
resulting vector is unflattened into a 3D tensor of size
[number of channels × height × width], which serves
as input to the convolutional core of the network. This
core is composed of five layers of transposed convolution,
batch normalization, ReLU activation function, and dropout.
After these five blocks, a convolutional layer with a single
filter is applied to transform the feature map into the final
reconstructed image with one channel.

It is trained with the mean squared error (MSE) training
objective using the AdamW optimizer [7] with learning rate
3−4 and weight decay 3−2 for 200 epochs. Similarly to
GAN in the next section, the final CNN decoder is taken
to be the checkpoint that achieved the lowest FID score on
the validation set. The validation set was also used for a
hyperparameter search (see Appendix II for a complete list).

C. Generative Adversarial Network

The primary focus of this project is directed on the
generative adversarial network (GAN) with a so-called MEI
readin [4]. Our choice is motivated by the fact that this
method showed significant improvements over the previous
method [5], but its more thorough analysis has been lacking.

It adds the adversarial objective from the GAN literature
as an auxiliary task for a CNN-based decoding network
that is trained with the logarithmic SSIM loss [4] (other
training settings and the model selection is the same as
IV-B). Another major difference from vanilla GANs that
synthesize images from random noise is the fact that this
GAN decoder generates images conditioned only on the
neuronal responses (and neuronal coordinates if available).

1We adopt the open-source implementation introduced as part of the
SENSORIUM 2022 competition: https://github.com/sinzlab/sensorium

In addition to the reformulation of GANs and the baseline
CNN IV-B, it also introduced a novel input module called
most exciting input (MEI) readin. MEIs are stimuli, images
in our case, that maximize the response of a particular neu-
ron and have been widely used and studied in computational
neuroscience. This readin module concatenates MEIs of all
neurons into a 3D tensor and then pointwise multiplies it
with another contextualization tensor. This contextualization
is the output of a grid network, which takes in individual
neuronal responses (and coordinates if available) and pro-
duces N independent H × W feature maps, where N is the
number of neurons and H and W are the height and width
of the MEIs (36× 64 in our case).

We start with the same hyperparameters as in the original
work [4], but explore how individual hyperparameter settings
and architectural decisions impact performance. Full details
of this method, including the MEI generation procedure, can
be found in the original manuscript [4].

D. Transfer Learning from Pretrained Autoencoders

To alleviate the scarcity of biological data, we experiment
with two pre-trained autoencoding networks. The premise is
that autoencoding networks require only images for training,
and we only need the limited biological data to learn the
mapping from the neuronal recordings to the latent space of
the autoencoder, and then use the decoder to reconstruct the
image. This approach has already been explored in works
such as [8] and [9].

All our hyperparameters are chosen based on the perfor-
mance on the validation data of the respective datasets. See
the Appendix for a complete list (III and IV).

SD-VAE: The first is the variational autoencoder of
stable diffusion (SD-VAE) [10]. Inspired by [9], we map
neuronal responses to SD-VAE’s latent space to then use
its decoder to reconstruct images. Unlike [9], which maps
to both latent space and CLIP embeddings and utilizes
the full diffusion pipeline, our approach focuses solely on
latent space, constrained by the limited semantic information
available from the mouse’s primary visual cortex. The SD-
VAE being pre-trained on large datasets provides a robust
backbone for this task. For images of dimension 64 × 64,
SD-VAE has a latent space of 4× 8× 8 into which we map
the neuronal responses.

We experimented with four models for this task: a ridge
regression, an MLP, and two variants of CNN. Out of all
of them, the MLP exhibited the best results on both the
validation and test data. The MLP consists of four fully
connected layers with output sizes of 4096, 2048, 1024 and
256, respectively.

ResNet50: Our second choice of a pre-trained model
is motivated by the insight that brains recognize features
similar to artificial neural networks (ANNs). Specifically,
we selected ResNet50 as the encoder since the alignment of
its layer layer3.0.downsample.0 with neural activity

https://github.com/sinzlab/sensorium
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Figure 1: Relationship between performance and the amount
of training data (left) and available neurons (right).

in V1 was found to be the highest, as evaluated by the
competition hosted on Brain-Score.org.

For the decoder, we employ nine transposed convolutions
that upsample ResNet’s activations from 1024 × 14 × 14
to full-sized grayscale images 1 × 224 × 224. Batch nor-
malization and leaky rectified unit with negative slope 0.1
are applied after each layer except the last one to stabilize
training. The training is performed on 500 randomly sampled
batches from ImageNet, each containing 64 images. We use
the binary cross-entropy (BCE) loss applied to the logistic
function of the model’s output and the min-max normalized
image pixels. We found a learning rate of 0.00005 and a
weight decay of 0.005 to give the best results.

We use a linear layer to map the neural recordings to 128×
14× 14, which we then upsample to the desired number of
channels using four convolutions, each preceded by a batch
normalization and leaky rectified unit with negative slope
0.1. We train this readin module using Adam Optimizer with
a learning rate 0.0128 and cosine scheduler, with batches of
size 64 for 80 epochs. As with the VAE, we do not perform
any additional fine-tuning of the autoencoder’s decoder after
we chain it with the readin.

V. RESULTS AND DISCUSSION

For quantitative evaluation, we adopt the mean squared
error, structural similarity index measure loss (SSIML) [4],
and the Frechet Inception Distance (FID) [11].

A. Data/Neuron-Performance Relationship

First, using the same hyperparameters as in [4], we
analyze the relationship between the decoding performance
and 1) the amount of available training data, and 2) the
number of recorded neurons. We simulate such scenarios
by training the GAN decoder from scratch with varying
amounts of training data and randomly subsampled neurons.

From Figure 1, we can see that the amount of data and
neurons has a large impact on the performance, especially
in the extremely limited data (neuron) regime. However,
after the first 1000 training data points (neurons), the per-
formance improvement starts to plateau. This shows that
the GAN decoder works well in a low-data regime but
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Figure 2: Reconstructed images as a function of the number
of data points (top) and neurons (bottom).

may face difficulties with scaling and further improvement.
It also supports the initial motivation for introducing the
auxiliary adversarial objective: When combined with the
main supervised decoding objective, it effectively reduces
the hypothesis space of the model, directing it toward more
natural-looking images while preventing collapse by the
direct ground-truth decoding signal.

Next, to better understand the influence of various archi-
tectural choices of the GAN decoder, we performed a series
of ablations and hyperparameter analyses.

B. Number of Channels

The biggest effect that we observed came from the num-
ber of output channels of the readin. This hyperparameter
controls the width of the information channel between the
neuronal recordings and the shared image generation core.

We can see in Figure 3 that the optimal number of
channels is around 256, which is also close to what was used
in [4] (480). The reconstructions also suggest that a smaller
number of channels leads to less contrastive images, while a
higher number of channels above 624 leads to hallucinated
noise. This may be due to the networks memorizing the
training images, hinting at a potential problem of overfitting.

C. Readin Configuration

The datasets used in [4] included neuronal coordinates
along the cortical surface, which also served as inputs to
the MEI readin. In our current setup, however, there are
no ground truth coordinates available. We try to circumvent
this issue by using the learned neuronal positions along the
feature representations of the encoder core. Our motivation
stems from the well-known topological organization of early
visual cortices (retinotopy), which we expect to some extent
to hold in the feature representation of the encoder, given
that it uses the features at these coordinates for predicting
the neuronal responses.

The originally proposed GAN decoder also introduced
two relatively nonstandard techniques. First, it was trained

https://www.brain-score.org/
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Figure 3: Impact of the number of channels on the test set
performance. The plot on the left shows the average and
standard deviation across three runs.

with logarithmic SSIM loss, unlike classical image gener-
ation techniques that employ MSE. Second, it transformed
the neuronal responses with logarithm base 10, stating that
it accelerated the training. We ablate these choices and the
neuronal coordinates and show the results in Figure 4.

The plot on the left shows that both the (learned) neu-
ronal coordinates (NC) and the response transformation
(T) degrade the quality of reconstructions. This ablation
shows that one could simplify the method while maintaining
or improving the performance. However, this is not the
case with the SSIM-based training objective: It achieves
substantially lower FID and comparable MSE compared to
MAE or MSE training.

Lastly, we present the final test performance of each
method in Table I along with sample reconstructions in
Figure 5. The dataset names in the brackets correspond to the
training data. For CNN and autoencoder-based decoders, we
report results only for B-6 training, while for GAN, which is
the main subject of our study, we also report B-All training.

First, we can see that for GAN, there is a negative transfer
from different mouse datasets (B-All). This shows that the
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Figure 4: Test set performance with various readin config-
urations (left) and training objective functions (right). The
average and standard deviation across three runs is shown.

Method SSIML MSE FID

InvEnc .366 .058 3.295
CNN (B-6) .392 .066 .677
GAN (B-6) .323 .038 .505
GAN (B-All) .328 .039 .519
ResNet50 Decoder (B-6) .468 .169 7.07
SD-VAE Decoder (B-6) .377 .060 6.05

Table I: Quantitative results on the test set of B-6. Bold
values signify the lowest (best) results.

Target InvEnc CNN
GAN
(B-6)

GAN
(B-All) ResNet50 SD-VAE

Figure 5: Reconstructed images from the test set of B-6.

individual mouse stimulus-response patterns might be too
dissimilar from each other, and the GAN decoder does not
have enough capacity to model all at once.

Second, in addition to the fact that GAN achieves the
best quantitative results, it also matches the contrast the best
(Fig. 5). This could be attributed to the SSIM-based training
objective that includes a contrast term in its formulation [12].

Lastly, neither of the autoencoder-based decoders reached
our best method. However, from visual inspection of the
reconstructed images, we can see that the brain-aligned
ResNet layer and ImageNet-only autoencoder training lead
to reconstructions of much higher fidelity than those ob-
tained using SD-VAE. It shows the importance of the
training distribution and architecture of the autoencoder. We
believe that better decoding results could be obtained by 1)
fine-tuning the decoder end-to-end on the brain data (i.e.,
after we chain the readin with the decoder), and 2) utilizing
the pre-trained image-to-neural-response encoder (IV-A) to
add auxiliary cycle consistency objective [13] or use it for
iterative response-image-response decoding (applicable also
to the GAN decoder). We leave this for future work due to
the time constraints of this project.

In summary, by ablating and analyzing the GAN decoder,
we have shown the importance of the SSIM-based training
objective and demonstrated that certain architectural choices,
such as input transformations, may have been misguided. We
have also shown that work needs to be done to improve the
transfer learning ability of this method. Furthermore, we ex-
perimented with two autoencoder-based decoders, revealing
the importance of their training distribution and proposing
ways to improve it.



VI. ETHICAL RISKS

The images paired with our brain data are sampled from
ImageNet. Furthermore, one of our decoding techniques
directly leverages pre-trained models on ImageNet and is
further trained on this dataset. This raises the ethical con-
cern of limited image data distribution since ImageNet has
well-documented biases, which we found out through our
literature research. For example, the vast majority of images
originate from Europe and the United States. Furthermore,
they mostly contain images from a specific socio-economic
group [14]. Consequently, as with any model trained on this
dataset, our techniques may perform significantly worse on
images from underrepresented regions.

It would be unacceptable for such a medical device to
only work in certain contexts (e.g., to be able to decode
only people of a certain skin colour). For this reason,
a dataset that emphasizes a wider distribution of images
(geographically, socially, and ethnically) should be used.
Furthermore, a rigorous evaluation of the system’s perfor-
mance should be conducted in individual contexts in order
to verify generalization across cultural, ethnic and economic
contexts. We did not perform such evaluation, due to the
unavailability of brain data paired with such images.

We believe the aforementioned ethical flaw is acceptable
in the context of theoretical research. However, in the event
of future applications of these techniques, especially in vi-
sual neuro-prosthetics, these ethical issues become essential.
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VII. APPENDIX

A. Hyperparameter Search Space of Inverted Encoder

The reconstructed image is initialized with normally dis-
tributed pixel values, and the hyperparameter search space
of the encoder inversion is as follows:

• Number of gradient steps: (300, 1000, 2000)
• Learning rate: (100, 1000, 2000)
• Standard deviation for the Gaussian blur of the image

gradient: (1, 1.5, 2, 2.5)
The search space was selected based on the ranges of

values the original authors used.

B. Convolutional Neural Network Architecture Details

Fully connected readin

Latent dimension 432
Unflattened size [3, 9, 16]

Dropout prob. 0.15

Core

Channels [480, 256, 256, 128, 64]
Kernel sizes [7, 5, 5, 4, 3]

Strides [2, 1, 1, 1, 1]
Paddings [2, 2, 2, 1, 1]

Dropout prob. 0.35

Table II: Hyperparameters used for the CNN decoder.

C. Transfer Learning Architecture Details



Stage Input Size Output Size Kernel Size Stride Padding

Transposed Convolutions
1 1024× 14× 14 768× 28× 28 4 2 1
2 768× 28× 28 512× 56× 56 4 2 1
3 512× 56× 56 384× 112× 112 4 2 1
4 384× 112× 112 256× 224× 224 4 2 1
5 256× 224× 224 128× 112× 112 5 1 2
6 128× 112× 112 64× 112× 112 3 1 1
7 64× 112× 112 32× 112× 112 3 1 1
8 32× 112× 112 16× 112× 112 1 1 0
9 16× 112× 112 1× 112× 112 1 1 0

Table III: Detailed configuration of the transposed convolutions used in the architecture of the decoding network.

Stage Input Size Output Size Layer Type Kernel Size Stride Padding

Fully Connected and Reshape
1 n features 128× 14× 14 Linear + Reshape - - -

Convolutions
2 128× 14× 14 256× 14× 14 Conv2D + BatchNorm + ReLU 5 1 2
3 256× 14× 14 512× 14× 14 Conv2D + BatchNorm + ReLU 5 1 2
4 512× 14× 14 512× 14× 14 Conv2D + BatchNorm + ReLU 1 1 0
5 512× 14× 14 1024× 14× 14 Conv2D + BatchNorm 1 1 0

Table IV: Detailed configuration of the linear and convolutional layers used in the readin module architecture.
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